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Abstract 
Nuclear fusion science is an example of a scientific field with a rich history of 
expert involvement and scientific publications, which together, form an expert-
knowledge base. One example of this history is the utilization of published reaction 
rates from a variety of authors. Investigators for Deuterium-Tritium (D-T) ion 
fusion can choose from using frequently cited methods: the Bosch and Hale [1] 
reactivity, thermonuclear reaction rates from Caughlan and Fowler [2], and the 
reactivity evaluation from Miley, Towner & Ivich [3] which forms the basis of the 
Naval Research Lab (NRL) formulary [4]. There are other choices available. Each 
of the reactivity formulations considered here, [1-4], are based upon the Maxwell-
Boltzmann velocity distribution for D-T fusion ion reactants. Numerical methods 
for computer codes simulating hot, energetic plasmas, include tabulations of the 
reactivity, and the first moment of energy.  The purpose of this study is to answer 
the question: what is the first moment of energy, and how has it been formulated? 
  This report is part of a series of reports by the authors on D-T fusion-reaction 
formalism, [5-9].  The present focus is on defining the mathematical relationship of 
the first moment of D-T fusion ion kinetic energy, <E>, with the fusion cross-
section, fusion reactivity and its derivative with respect to ion-temperature. Three 
variants of the first moment <E> are analytically developed and explored: 1) 
constant cross-section, 2) a normalized first moment, and 3) a particular function 
of the first moment. Much of the mathematical development is relegated to the 
Appendices, for a concise presentation of topics and results. A research component 
of this discussion is our comparison of some of the reactivity and its derivative 
results between evaluations [1] versus [2] and [3], which the authors have not found 
in any other publication to date. This investigation is useful for validation, 
verification (V&V) and uncertainty quantification (UQ) as it compares the work of 
several authors. 
  
  

I. Introduction—Reactivity & Energy 
There exist a multitude of useful, published evaluations of Deuterium-Tritium (D-T) ion 
fusion reaction rates, for example, References [1-4]. Reasoning for preferring one 
evaluation to another is not usually explained by authors/experts. The reasons which could 
cause a scientist to prefer one evaluation over another include validity, confidence, or ease 
of use. Nuclear fusion is a scientific field with a rich history of expert involvement and 
scientific publications, which together, form an expert-knowledge base. As can happen, 
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jargon and historical standards can reduce the transparency of a subject, making validation, 
verification and uncertainty quantification difficult. The focus of this paper is on defining 
the mathematical relationship of the first moment of D-T fusion-ion kinetic energy, <E>, 
with the cross-section for D-T fusion. This technical note is one in a series of reports ([5], 
[6], [7], [8], [9]) examining various aspects of reactivity formalisms of fusion physics and 
mathematical methods, interrelationships of physical quantities and observables, analyses 
results, and references. The D-T fusion reaction is especially interesting because it lends 
itself to practical use. In the jargon of nuclear physics, it is a large, broad, charged-particle 
resonance reaction. Under the physical applications assumed for this discussion, all nuclei 
and radiation are in thermodynamic equilibrium under nondegenerate, nonrelativistic 
conditions with regards to velocity and energy distribution.  
 
Fusion reactivity, f, is traditionally expressed as the average over the Maxwell-Boltzmann 
(MB) velocity distribution for ions, g(v), 
 

𝑓 =< 𝜎𝑣 >= ∫ 𝜎(𝑣)𝑣𝑔(𝑣)!
" 𝑑𝑣 = , 𝜎(𝑣)𝑣4𝜋 / #

$%&'°
0

!

"

(.*

𝑣$exp /+#,
!

$&'°
0 𝑑𝑣     (1) 

 
where the MB velocity probability density function (pdf) is: 
  

𝑔(𝑣)𝑑𝑣 = 4𝜋 / #
$%&'°

0
(.*
𝑣$exp /+#,

!

$&'°
0 𝑑𝑣 .         (2) 

 
This is the same assumption made for the ideal gas, comprised of atoms or molecules. The 
MB pdf in (2) can be considered as the probability per unit speed, v, and is the chi 
distribution (positive square root of the chi-squared pdf) with 3 degrees of freedom [10].  

 
The velocity, v, is the magnitude of speeds in three directions, x, y and z, and is defined as:  
  

𝑣 = 4𝑣-$ + 𝑣.$ + 𝑣/$ .                                                    (3) 
 
Each speed in (3) can be defined as a relative velocity, the absolute value of the difference 
of two speeds. The development of the MB pdf in (2) is given in Appendix A starting from 
the distribution for a single species of speed. The single direction of speed distribution is 
commonly known as the Boltzmann distribution or the Maxwell distribution [10].  
 
In (1) and (2), T° is in units of °K, degrees Kelvin, and s(v) is the cross-section as a function 
of velocity. Ion-temperature, T, is expressed in keV, and corresponds to the product kT° in 
(1) and (2). The value of the Boltzmann constant is k = 8.612 x 10-8 keV/°K. From this 
point on, kT° is expressed as T. Reactivity, expressed in (1), has dimensions of 
volume/time, and for the scaling used here, those units are cm3/sec. The mass, m, is the 
reduced mass, which for two masses, m1 and m2 is given by: 
 

𝑚 = #(#$
#(0#$

    .                                                       (4) 
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The development of reactivity, f, in (1) is also given in Appendix A. It begins with two 
traditional definitions of velocity:  center-of-mass (CM) and relative velocity. Of those 
two, only the relative velocity is preserved in (1).  
 
There is another frequently cited formulation for reactivity in (1) based upon energy instead 
of velocity. References include Bosch and Hale [1], Kaye & Laby [11], Brysk [12], Fowler 
et al. [13] and Miley et al. [3]. This E formulation relies upon the relative kinetic energy  
 

𝐸 = /(
$
0𝑚𝑣$            (5) 

 
where m is reduced mass in (4) and v is in (3). This kinetic energy definition with this mass 
definition is the center of mass energy, or ECM. The energy formulation is often used in 
conjunction with the astrophysical factor, S(E) [1, 2] discussed in following sections. 
 
This energy formulation in (5) can also be mathematically expressed using momentum, p, 
 

𝐸 = /|2|
!

$#
0.            (6) 

 
The relationship between energy and velocity in (5) is used to find the distribution for E 
from the MB pdf in (2) applying the change of variable technique (from v to E). That 
development is in Appendix B.   
 
The MB energy distribution is:  
 

         𝑔(𝐸) = 2 /3
%
0
( $⁄

/(
'
0
5 $⁄

𝑒𝑥𝑝 /− 3
'
0.          (7) 

 
Wikipedia® [10] provides the development of (7) from the momentum in (4).  
 
The energy distribution in (7) looks similar to the two-parameter (k, q) gamma pdf for 
random variable x given in (8): 
 
   gamma(𝜅, 𝜃) = -(#$%)

6(8):#
𝑒𝑥𝑝 /− -

:
0.           (8) 

 
Comparing (7) to (8) reveals 𝑔(E) is a gamma pdf, where the random variable, x, is E, and 
T is the scale parameter q. The shape parameter of k is 3/2. The leading square root term 
of (7) matches that of the gamma pdf because G(3/2)=1/2 √p.  
 
The mean of 𝑔(E), when g(v) is the MB distribution, is kq = 3T/2 . This latter result is familiar 
from elementary physics texts: The average translational kinetic energy of an object mass m is 3/2 
kT° [here defined as ion-temperature, T (keV)]. The variance, is kq 2 = 3T 2/2.  
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While 𝑔(E) being a gamma pdf when 𝑔(v) is the MB pdf is an interesting result, the major 
focus of this series of technical report is on reactivity, f = <sv>, in (1), and its derivatives 
with T.   
 
Obtaining the reactivity (1) in terms of E follows from the change of variable (v to E) with 
the velocity pdf (2) conversion to the energy pdf (5). Beginning with reactivity in (1), the 
substitution for v in terms of E comes from (5) and for 𝑔(v) comes from 𝑔(E) in (7).  The 
latter comes from the change of variable technique in Appendix B which accounts for the 
change of dv to dE through the Jacobian. The resulting reactivity in terms of E becomes: 
  

𝑓 = # 𝜎(𝑣) ⋅ 𝑣 ⋅ 𝑔(𝑣)
!

"

𝑑𝑣 =+𝜎(𝐸)-
2𝐸
𝑚 ⋅ 𝑔(𝐸)

!

"

𝑑𝐸

𝑓 =+𝜎(𝐸)-
2𝐸
𝑚 ⋅ 2 0

𝐸
𝜋2

# $⁄

0
1
𝑇2

& $⁄

𝑒𝑥𝑝5−
𝐸
𝑇6

!

"

𝑑𝐸

 

𝑓 = /(
'
0
5 $⁄

D 𝜎(𝐸) ⋅ 𝐸F ;
#%

⋅ 𝑒𝑥𝑝 /− 3
'
0

!

"

𝑑𝐸        (9) 

 
Moving the square root term outside the integral (9) produces the familiar form for the 
reactivity in terms of E as: 
 

             𝑓 = / ;
%#
0
( $⁄

/(
'
0
5 $⁄

∫ 𝜎(𝐸)𝐸!
" exp /+3

'
0𝑑𝐸 .       (10) 

 
This reactivity expression can be found in the literature, especially in the astrophysics 
community. For example, see page 86 of Fowler et al. [13].  
 
A side by side comparison of (10) and (1) shows the similarity of the two reactivity forms: 
 

/$
%
0
( $⁄

/#
'
0
5 $⁄

∫ 𝜎(𝑣)!
" 𝑣5exp /+#,

!

$'
0 𝑑𝑣 = / ;

%#
0
( $⁄

/(
'
0
5 $⁄

∫ 𝜎(𝐸)𝐸!
" exp /+3

'
0 𝑑𝐸.	(11) 

 
 
With various calculation formulations for f in terms of velocity available (e.g., [1], [2], [4]), 
examining the relationship between these two forms is interesting. Much of the 
experimental, observational and computational focus of reactivity uses the energy 
formulation.  The derivatives of f with T, e.g. [5-8], drives the need to understand the 
comparison between the two reactivity forms in (11).  
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II. First Moment Definition for E 
The expected value or mean (or average) for a continuous random variable x distributed as 
the probability density function, 𝑔(x), is given as: 
 

< 𝑥<,= >	= ∫ 𝑥𝑔(𝑥)!
+! 𝑑𝑥.                                             (12) 

 
The probability distribution, 𝑔(x), has the requirement that its integral equals 1: 
 

∫ 𝑔(𝑥)!
+! 𝑑𝑥 = 1  .                            (13) 

 
Equation (12) is the average of x, and the integration is over all admissible values of x. This 
expected value of x is also known as the mean of x, the average value of x, and the first 
moment of the distribution function, 𝑔(x).  
 
 
Many physical variables, like energy and reactivity, do not have negative values making 
the lower integral limit 0 in (12)-(13). 
 
As used in physical applications, the intention of (13) is that the summation of probabilities 
of observing each possible final state (outcomes) over all “trials” is defined as 1.  
 
The probability of observing the random variable between limits x1 and x2 is: 
 

𝑃(𝑥( ≤ 	𝑥 ≤ 𝑥$) = ∫ 𝑔(𝑥)-$
-( 𝑑𝑥 .        (14) 

           
The integrands and the integrals cannot be greater than one or less than zero in (13) and 
(14).  
 
If the constraint in (13) is lifted, then a general first moment for x can be defined using any 
general function of x, h(x).  The general first moment of x is defined using the same notation 
as: 
 

< 𝑥 >= ∫ 𝑥ℎ(𝑥)!
+! 𝑑𝑥  ,               (15) 

 
where there are no restrictions on h(x).  
 
Only when 𝑔(x)=h(x) is the first moment also the mean or average in (12). In this case, the 
units of <xavg> match those of x. In the general case in (15), this is not necessarily the case.   
 
As an example, it is usual for beginning physics students to make the analogy with mass 
moments. In this case, the mean, or first moment, represents the center-of-mass of the mass 
distribution [𝑔(x) is the mass distribution function in this example]. The random variable x 
corresponds to the position in one dimension, the distance to the origin, defined in the 
chosen coordinate system. [In this example, position x could take on negative values, but 
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mass cannot take on negative values.] Evaluation of the integral in (12) yields the center-
of-mass in this example. 
 
The reactivity, <sv>, in (1) uses the general first moment notation where x is a compound 
quantity, s(v)·v, and h(x) is the MB velocity distribution function in (2).  Notice that while 
the MB distribution is a pdf, it is not the distribution function of the compound variable 
s(v)·v—MB is the distribution function only of velocity. Technically, reactivity is not an 
expected value or mean as in (12) unless the MB pdf is considered as the joint distribution 
of s(v)·v. The form of the reactivity integral in (1) is velocity oriented: 
 

𝑓 =< 𝜎𝑣 >= ∫ {𝜎(𝑣) · 𝑣}𝑔(𝑣)!
" 𝑑𝑣. 

 
Nonetheless, reactivity in (1) can be considered as a measure of central tendency of the 
compound quantity, and <s(v)·v> has units of s(v)·v.  
 
Reactivity defined in terms of E in (10) has the form of the general first moment in (15) 
with the presence of s(E).  Everything in the integrand is in terms of E: 
 

                𝑓 = / ;
%#
0
( $⁄

/(
'
0
5 $⁄

∫ 𝜎(𝐸)𝐸!
" exp /+3

'
0 𝑑𝐸. 

 
Reactivity, written above in terms of E, produces an equation for the general first moment 
of energy, <E>, as: 

 
             ∫ 𝜎(𝐸)𝐸!

" exp /+3
'
0𝑑𝐸 = ∫ 𝐸	ℎ(𝐸)!

" 𝑑𝐸 =< 𝐸 >.                  (16) 
 
In (16), h(E) is assigned as: 

         ℎ(𝐸) = 𝜎(𝐸)exp /+3
'
0 .         (17) 

 
Then reactivity (10) can be expressed in terms of <E> in (16) using (17) as: 
 

𝑓 = P
8
𝜋𝑚R

( $⁄

P
1
𝑇R

5 $⁄

, 𝜎(𝐸)𝐸
!

"

exp P
−𝐸
𝑇 R 𝑑𝐸 = P

8
𝜋𝑚R

( $⁄

P
1
𝑇R

5 $⁄

, ℎ(𝐸)
!

"

𝑑𝐸 

																	𝑓 = / ;
%#
0
( $⁄

/(
'
0
5 $⁄

< 𝐸 >.                              (18) 
 
For convenience, inclusion of the constant term in reactivity, C, 	

𝐶 = P
8
𝜋𝑚R

( $⁄

, 
 
will be suspended: 

 𝑓 = 𝐶 /(
'
0
5 $⁄

< 𝐸 >= /(
'
0
5 $⁄

< 𝐸 >   .                                  (19) 
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Analytically1 evaluating the integral in (16) is difficult because the cross-section can, in 
general, be a complicated function of the energy. Assuming a constant cross-section 
mitigates the mathematical difficulty. This special case is examined below, as an example. 
The case for preserving s(E) inside the integral is that the probability for the D-T fusion 
reaction varies significantly with energy over the widths of the distributions. This effect is 
particular for D-T fusion as a function of temperature, given the low-lying resonance. That 
development is continued in a subsequent paper by the authors, labeled as Part II. It should 
be noted that few forms of the cross-section can be analytically integrated. 
 
 
III. Reactivity Temperature Derivative 
 
The focus of this study continues that of previous studies [5, 7] which is on the ion- 
temperature derivative of reactivity. This quantity will prove useful for diagnostics: 
 

𝑓'=df /dT,          (20) 
    

The reactivity T derivative using <E> in (20) is 
 

    𝑓' = ()
(*
=

((*!" #⁄ ∫ -.(-)%
& 012	(4-/*)⋅(-))

(*
= (7*!" #⁄ 8-9:

(*
 

 

												𝑓> = − 5
$
/(
'
0
'
! < 𝐸 > +/(

'
0
5 $⁄ ?(@3A)

?'
   .       (21) 

 
A previous study in this series, [5], explored the reactivity T derivative, and the ratio of 
𝑓>/𝑓 in particular.  That ratio for <E> becomes:  
 

B>
B
=

+(!C
%
)D
'
!@3A0C%)D

( !⁄ +(,-.)
+)

C%)D
( !⁄

@3A
= − 5

$
/(
'
0 +	/	 (

@3A
0 ?(@3A)

?'
  .           (22) 

 
Noting that 

	 (
@3A

= ?[FG(@3A)]
?(@3A)

,              (23) 
 
substitute (23) for 1/<𝐸> in (22) to produce an 𝑓>/𝑓 ratio expression that can be calculated 
from the ion-temperature T, reactivity, and its first T derivative, 𝑓>: 
 

B>
B
= − 5

$
/(
'
0 + ?(@3A)

?'
?[FG@3A]
?@3A

= − 5
$'
+ ?[FG('%.'B)]

?'
     .             (24) 

 

 
1	Numerical methods of evaluation are not considered here. Hale & Talley [14] use the 
computer code STEEPM for numerical integration.	
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The last term in (24) is a result of	< 𝐸 >= 𝑇(.*𝑓, from (18), without the leading constant, 
C.  Therefore, the 𝑓>/𝑓 ratio is a function of the first moment, <E>.  
 
As noted earlier, three special cases of the first moment of <E> are examined:  

1. Assume a constant cross-section, s, which does not vary with E.  
2. Normalize the general function, h(x), in (19) to produce the average as in (12). 
3. Examine the 𝑓>/𝑓 ratio expression in (24) in conjunction with the solution and 

definition of <K> from Brysk [12]. 
 
Case 1: Constant Cross-section 
 
For a constant s, not a function of E, there is no cross-section inside the integral, and h(E) 
is defined as: 
 

ℎ(𝐸) = (
'
exp(−𝐸/𝑇).                                          (25) 

 
If a (1/T) term is pulled inside the integral, as in (25), the first moment of energy becomes 
analytically tractable.  The first moment of energy for this case is designated as <E*>: 
 

< 𝐸∗ >= , (
'
𝐸exp(−𝐸/𝑇)

!

"
𝑑𝐸.          (26) 

    
The reactivity designated as f * becomes:  
 

																																														𝑓∗ = / ;
%#
0
( $⁄

/(
'
0
(/$

𝜎, (
'
𝐸exp(−𝐸/𝑇)

!

"
𝑑𝐸.                     (27) 

 
The relationship between the first moment (26) and reactivity (28) for the constant cross-
section case is: 
 

          𝑓∗ = / ;
%#
0
( $⁄

/(
'
0
%
! 𝜎 < 𝐸∗ >= 𝐶 /(

'
0
%
! 𝜎 < 𝐸∗ >= /(

'
0
%
! 𝜎 < 𝐸∗ >.       (28) 

 
Again, the leading constant C is temporarily dropped.  
 
The reactivity integral in (27) has a closed form. That integral is the mean of the 
exponential pdf. This result is also useful for determining the ?(@3A)

?'
 when evaluating the 

reactivity T derivative in (21).  
 

 
Restoring the leading C and constant cross-section, the reactivity derivative with respect to 
T is as follows:  
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𝑓∗> = 𝐶𝜎
?KC%)D

% !⁄
@3∗AL

?'
= 𝐶𝜎 /(

'
0
( $⁄ ?@3∗A

?'
+< 𝐸∗ >

?KC%)D
% !⁄

L

?'
 .           (29) 

  
The derivative in the second term is evaluated as: 
 

?KC%)D
% !⁄

L

?'
= ?('$% !⁄ )

?'
= −0.5𝑇+5 $⁄ .                                  (30) 

 
 
The derivative in the first term is evaluated using <E*>=T:  
 

?@3∗A
?'

= ?'
?'
= 1.                                                  (31) 

 
Then 𝑓∗>becomes 

B∗1

MN
= 𝑇+( $⁄ − 0.5 < 𝐸∗ > 𝑇+

(
!	,                                     (32) 

or alternatively as: 
 

B∗1

MN
= 𝑇+* $⁄ 𝑇$ − 0.5 < 𝐸∗ > 𝑇+

(
! = 𝑇+* $⁄ < 𝐸∗ >$− 0.5 < 𝐸∗ > 𝑇+

(
!   .      (33) 

 
The final form of 𝑓∗>	from (33) is: 
 

𝑓∗> = 𝐶𝜎W−0.5𝑇+5 $⁄ < 𝐸∗ > +𝑇+* $⁄ < 𝐸∗ >$X   . 
 
Recall that: 

																			𝑓∗ = 𝐶𝜎𝑇+(/$ < 𝐸∗ >; 
 
therefore, the ratio is 
 

                                            B
∗>
B∗
=

K+%!C
%
)D
( !⁄

@3∗A0C%)D
' !⁄

@3∗A!L

C%)D
%
!@3∗A

=	+(
$'
+ @3∗A

'!
                   (34)  

 
with C·s cancelling out in numerator and denominator. 
 
There is an equivalent analytical formulation in Appendix C featuring an alternative form 
of h(E) as:    
         

													ℎ(𝐸) = exp(−𝐸/𝑇).                                           (35) 
 
 

Case 2: Normalization to Produce the First Moment as the Mean 
   
The first moment in its general form is defined in (15) as: 
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< 𝑥 >= ∫ 𝑥ℎ(𝑥)!

+! 𝑑𝑥  . 
 

The general first moment of energy, <E>, is in (16) as: 
 

               ∫ 𝜎(𝐸)𝐸!
" exp /+3

'
0𝑑𝐸 = ∫ 𝐸	ℎ(𝐸)!

" 𝑑𝐸 =< 𝐸 > . 
  
Examination of (16) indicates that the units of <E> are cm2 keV2 where E has units of keV 
and cross-section has units of cm2. One would rather have the first moment with units 
matching those of the E, which are keV.  When the moment corresponds to the expected 
value, mean or average of E, then the units match. Recall, the expected value for a 
continuous random variable E distributed as the probability density function (pdf), 𝑔(E), is 
given as in (12) as: 

< 𝐸<,= >	= ∫ 𝐸𝑔(𝐸)!
" 𝑑𝐸,                                              (35)                                           

 
where, 𝑔(E), is a pdf with the requirement that it integrates to 1, 
 

∫ 𝑔(𝐸)!
" 𝑑𝐸 = 1  .    

                      
To convert the general function h(E) to a pdf, 𝑔(E), requires normalization: change 
 

    O(3)?3
∫ 3	O(3)2
3 ?3

= 𝑔(𝐸).                    (36) 

 
The units of	𝑔(𝐸) are inverse those of E, keV, and the mean or average of E is designated 
as <Eavg>: 
               	
                         < 𝐸<,= >= ∫ 𝐸	[𝜎(𝐸)!

" exp /+3
'
0 /	∫ 𝜎(𝐸)!

" exp /+3
'
0 𝑑𝐸]	𝑑𝐸           (37) 

 
The normalizing integral in the denominator is a constant with respect to E but is a function 
of T. It is designated as 1/A(T):  

1
𝐴(𝑇) = , 𝜎(𝐸)

!

"

exp P
−𝐸
𝑇 R𝑑𝐸 

< 𝐸<,= >= 𝐴(𝑇), 𝐸𝜎(𝐸)
!

"

exp P
−𝐸
𝑇 R𝑑𝐸 

< 𝐸<,= >= 𝐴(𝑇) < 𝐸 > .       (38) 
 

The units of <Eavg> are now the same as E, keV, as demonstrated by the ratio in (37).  
 
Reactivity for the general first moment is given in (10) as:  
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𝑓 = / ;
%#
0
( $⁄

/(
'
0
5 $⁄

< 𝐸 >.   
 
Reactivity for <Eavg> is now 

𝑓 = / ;
%#
0
( $⁄

/(
'
0
5 $⁄ R(')

R(')∫ 𝐸𝜎(𝐸)!
" exp /+3

'
0𝑑𝐸  

 

𝑓 = M
R(')

/(
'
0
5 $⁄

< 𝐸<,= >  ,                                            (39) 

where C is the same leading constant as before,	/ ;
%#
0
( $⁄

. 
 
The <Eavg> is a desirable definition for the first moment because it corresponds to the mean 
or average and has units matching E. Any general function of E, h(E) can be converted to 
this form through the normalization in (36). 
 
Reactivity using <Eavg> is a linear transformation from that of <E> as shown in (38) and 
(39).  However, the temperature derivative of the reactivity, f, using <Eavg> is more 
complicated. Equation (21) begins the development of that derivative: 
 

                                𝑓' = ()
(*
=

((*!" #⁄ ∫ -.(-)%
& 012	(4-/*)⋅(-))

(*
= (7*!" #⁄ 8-9:

(*
. 

 
Substituting <Eavg> for <E> according to (38) provides the starting point for 𝑓′ .	The 
derivative proceeds as follows: 
 

𝑓' =
𝑑𝑓
𝑑𝑇

=
𝑑[𝐶/𝐴(𝑇)]<𝑇4& $⁄ < 𝐸𝑎𝑣𝑔 >?

𝑑𝑇
 

 

  𝑓> = ]− 5
$
/(
'
0
'
! < 𝐸<,= > +/(

'
0
5 $⁄ ?V@3456AW

?'
^ ( M

R(')
)+(𝑇−3 2⁄ < 𝐸<,= >)

𝑑[𝐶/𝐴(𝑇)]
𝑑𝑇

 

 
 

                𝑓> = ]− 5
$
/(
'
0
'
! < 𝐸<,= > +/(

'
0
5 $⁄ ?V@3456AW

?'
^ / M

R(')
0 − 𝐶𝑇−3 2⁄ <3456>

𝐴(𝑇)2
𝑑[𝐴(𝑇)]
𝑑𝑇

 

 

        𝑓> = ]− 5
$
/(
'
0
'
! < 𝐸<,= > +/(

'
0
5 $⁄ ?V@3456AW

?'
^ / M

R(')
0 − 𝐶𝑇−3 2⁄ <3456>

𝐴(𝑇)
?(ln	(𝐴(𝑇))

?'
  (40) 

 
The 𝑓>/𝑓 ratio is then: 

   B1

B
=

C 7
8())DX+

(
!C
%
)D
'
!@3456A0C

%
)D
( !⁄ +9,-456.:

+) +𝑇−3 2⁄ <3456>
+(ln	(𝐴(𝑇))

+) Y

7
8())C

%
)D
( !⁄

@3456A
 

 

    B1

B
= − 5

$
/(
'
0 + ?ZFGV@3456AW[

?'
− ?(ln	(𝐴(𝑇))

𝑑𝑇
.                                         (41) 



	 12	

 
Comparing (41) to the first moment ratio in (24): 
 

B>
B
= − 5

$
/(
'
0 + ?(@3A)

?'
?[FG	(@3A)]

?@3A
= − 5

$'
+ ?[FG	(@3A)]

?'
  

  
indicates the same two logarithmic derivative terms in common. There is an additional term 
in (41) involving the functional relationship of the normalization factor, A(T), with T. This 
comparison is examined in the Application section below. In summary, Case 2 examines 
the condition where the first moment, <E>, is the average or mean of E, <Eavg>. 
 
As with <Eavg>, the estimator introduced in Case 3 has units of energy, keV, but deviates 
from a strict first moment definition and from the mean, <Eavg>.   
 
Case 3: Introduction of <K> [12] 
 
From the Introduction section, reactivity, f, is defined in terms of E and its general first 
moment of energy, <E>, in (16) as: 

      
           ∫ 𝜎(𝐸)𝐸!

" exp /+3
'
0𝑑𝐸 = ∫ 𝐸	ℎ(𝐸)!

" 𝑑𝐸 =< 𝐸 > , 
 

and in Case 2, the average of E, <Eavg> is defined in (38) as: 
 

< 𝐸<,= >= 𝐴(𝑇) < 𝐸 > 
 
where (

R(')
= ∫ 𝜎(𝐸)!

" exp /+3
'
0𝑑𝐸 is the normalizing factor for a given T. 

 
In (17), h(E) is assigned as ℎ(𝐸) = 𝜎(𝐸)exp /+3

'
0, where cross-section is defined as a 

function of E.  There is a brief discussion of some useful functions for cross-sections in 
terms of E in the Application section below.     
 
In a classic reference [12], Brysk defines reactivity2 in terms of relative kinetic energy, K, 
corresponding to (9): 
 

                               𝑓 =< 𝜎𝑣 >= /#%0#!
%#%#!

0
( $⁄

/'
$
0
+5/$

∫ 𝐾𝑑𝐾𝜎(𝐾)!
" exp /+\

'
0     .     (42) 

 
Brysk defined <E> as the total mean energy of the reaction where <C> is the mean center-
of-mass kinetic energy, (different from the constant C used above) and <K> is a ratio3:  
 

 
2 Brysk’s equation (16) in [12]. 
3 Brysk’s equation (22) in [12]. 
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                         < 𝐸 >= @N,(M0\)A
@N,A

=< 𝐶 > +< 𝐾 > 
 

< 𝐶 >≡ 1.5𝑇                               
 

                                            < 𝐾 >≡ @N,\A
@N,A

=
∫ \!?\N(\)2
3 ]^_C$;) D

∫ \?\N(\)2
3 ]^_C$;) D

     .                          (43) 

 
 
Brysk interpreted (43) as the mean relative kinetic energy of the reacting particles weighted 
by the reaction rate. 4 We recognize <K> as the ratio of the second moment to the first 
moment of the relative kinetic energy.  
 
Without providing the steps, Brysk stated the solution5 of <K>, labeled as < 𝐾`abc >: 
 

< 𝐾`abc >= 𝑇$ ?[FG('
%.'@N,A)]
?'

 =𝑇! "[$%('
H.J()]

"'
                        (44) 

 
Inserting (42), Brysk’s function f, into his solution in (44), produces the following:  
 

< 𝐾`abc >	= 𝑇$
?dFGK'%.''$

(
! ∫ \?\N(\)2

3 ]^_C$;) DLe

?'
               

 

< 𝐾`abc >= 𝑇$
?[FG(∫ \?\N(\)2

3 ]^_($;) ))]

?'
  .                                  (45) 

 
Examining the derivative of the ln term in <Ksoln> (44), the following relationships hold: 
 
 
          (

'%.'B
= ?[FG('%.'B)]

[(.*'3.'B0'%.'B1]?'
= ?[FG('%.'B)]

?'
( (
(.*'3.'B0'%.'B1

) 
?[FG('%.'B)]

?'
= (.*'3.'B0'%.'B1

'%.'B
     .                            (46) 

 
Inserting the expression in (46) into (44), <Ksoln> is also: 
 

@\<=>?A

𝑇2
=	 (.*'

3.'B0'%.'B1

'%.'B
= 1.5𝑇+( + B1

B
    

             < 𝐾`abc >= 1.5𝑇 + 𝑇2 B
1

B
.                                             (47) 

 
Rearranging (47) shows the  B

1

B
  ratio taking on a familiar form: 

 
4 According to discussion around Brysk’s equation (17) in [12]. 

5	Brysk’s equation (24) in [12].	
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      B
1

B
= − (.*

'
+ @\<=>?A

𝑇2
 .                                                 (48) 

 
The  B

1

B
  ratio back in (22) is a function of the first moment <E>: 

 
       	B>

B
= − 5

$
/(
'
0 + ?ZFGV'%.'BW[

?'
= − (.*

'
+ ?[FG(M@3A)]

?'
     . 

 
Equating the two B

1

B
  ratios from (22) and (48) shows that 

 
                                                  < 𝐾`abc >	= 𝑇2

𝑑[ln	(𝐶<𝐸>)]
𝑑𝑇 						.				                                        (49) 

 
Therefore, the solution defined by Brysk, <Ksoln>, is a function of the general first energy 
moment, <E>, as defined back in (22).  
 
Exploring the relationships between <Ksoln> and the first energy moment, <E>, and 
between <Ksoln> and <Eavg>, the begs the question of under what conditions are <Ksoln> and 
<E> the same, and when are <Ksoln> and <Eavg> the same?  Recall that <E> and <Eavg> can 
be defined in terms of reactivity, f, from (21): 
 

𝑓 = P
8
𝜋𝑚R

( $⁄

P
1
𝑇R

5 $⁄

< 𝐸 >	= 𝐶 P
1
𝑇R

5 $⁄

< 𝐸 > 

< 𝐸 >=
𝑇5 $⁄ 𝑓
𝐶 	, 

and from (39): 
 

< 𝐸<,= >=
R(')'( !⁄ B

M
	 .  

 
Using (47), <Ksoln> is equal to the first moment <E>, when: 
 

1.5𝑇 + 𝑇$𝑓′/𝑓 = 𝑇5 $⁄ 𝑓/𝐶 
 

𝑇$
𝑓>

𝑓 =
𝑇5 $⁄ 𝑓
𝐶 − 1.5𝑇 

 
𝑓>

𝑓 =
𝑇5 $⁄ 𝑓
𝑇$𝐶 −

1.5𝑇
𝑇$ = −

1.5
𝑇 +

𝑓
𝑇(/$𝐶 

 
B1

B
+ (.*

'
= B

'%/!M
  ,                                             (50) 

 
and <Ksoln> is equal to <Eavg>, when: 
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B1

B
+ (.*

'
= R(')B

'%/!M
  .    (51) 

 
These conditions are examined in the Application section which follows. The relationship 
between Brysk’s ratio of moments definition of <K> in (43) and the solution, <Ksoln> in 
(48)-(49), is explored in another paper, planned as Part II of this paper.  
 
 
IV. Application for D-T Reactivity  
 
A. Cross-Section Discussion 
 
Fusion cross-sections as a function of energy E are have been experimentally measured 
using nuclear physics instrumentation. For example, a discussion of several different data 
sets considered for evaluation is in Bosch & Hale [1]. The experiments typically involve 
accelerating deuterium, and using a tritium target. For this reason, the experimental D+T 
cross-section data is usually reported in terms of the deuteron lab energy, while the tritium 
is typically a fixed laboratory target (velocity zero). Under the conditions of an accelerated 
beam of deuteron incident on a fixed target of tritium, velocity is considered constant, 
defined by the accelerator energy. The differential fusion cross-section is measured as 
defined by the (quasi-mono-energetic) deuteron bombarding energy. The D-T fusion cross-
section is a charged particle resonance phenomenon. The cross-section experimental data 
obtained in the laboratory is then analyzed. The data are said to be reduced through 
evaluation procedures. Over the years, the published results for reactivity may be different 
even though the cross-section sets considered for evaluation, the raw data, may be largely 
the same. This is to say that reactivity formalisms depend on the data as well as on various 
authors’ procedures and assumptions. There is also a tendency for experimentalists to 
normalize a data set on resonance. Experimentalists measuring D-T fusion have almost 
always measured data on the peak of the fusion resonance, because the cross-section is 
largest there, and the experiments can become easier when the cross-section is large. 
Experiments at energies below the resonance are typically the most challenging, because 
cross-sections are low and stopping powers are high. A lack of data at energies below the 
resonance leaves fitting procedures unconstrained. This was the case for the Duane 
parametrization, [1]. 
 
Some examples of commonly cited reactivity formalisms using various sets of 
experimental data are [1], [2], and [3]. An example of the procedure for generating values 
for reactivity as a function of temperature, for Bosch & Hale [1] is given in Hale & Talley 
[14]: 

 “The procedure for generating thermalized TN data [starting from cross-section data] is 
generally the following: 
One does an analysis of experimental data for the compound system containing the 
reaction(s) of interest, using the R-matrix code EDA [Energy Dependent Analysis Code, 
Dodder et. al.]. From the minimum-c2 solution found by EDA, integrated reaction cross  
sections are produced on any desired energy grid over the range of the analysis, and written 
in ENDF format using the code ENDFOR. For reactions leading to three-body final states, 
the codes SPECT and CMSPECT are used to produce the c.m. [center-of-mass] spectral 
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moments in ENDF format, as described above. The ENDF-formatted file containing all 
this information is then fed into STEEPM, which calculates the <sv>’s, average energies, 
and laboratory energy spectra for all outgoing particles.” 

Multi-channel R-Matrix theory overcomes problems inherent in cross-section 
parametrizations by putting two-body wave functions into channel radii explicitly. The 
method incorporates the Coulomb and angular momentum barrier penetration effects at all 
energies [1]. Nonetheless, less-sophisticated formalisms [2] and [3] describe the resonance 
region well. Differences can occur off-resonance. 
 
Formalisms [1] [2] [3] are compared below. We believe that an original component of this 
research is the comparison of the results between evaluations [1] versus [2] and [3], which 
the authors have not found in any other publication to date. Reference [1] includes 
comparisons between Bosch and Hale, versus Duane, Peres, and Hively, who are other 
published authors in the scientific field of D+T fusion. The work of Hively and Peres is 
referenced in [1]. 
 
Figure 1 shows the deuterium-tritium (D-T) cross-section data (barns), over a wide range 
of deuteron bombarding energy Ed keV) with a maximum around 107 keV. Cross-section 
is 1.0 barn at about 45 keV and 360 keV. The 625 values, compiled from the Brookhaven 
National Lab Data Center data base [15], have a mean of 1.33 barns. 
 
 

 
Figure 1: D-T cross-section data from 17 (color-coded) researchers [15] with incident 
deuteron energy, Ed in keV.  
 
 
A classic calculation for cross-section comes from Miley et al. [3]6 which cites the Duane 
[16] formulation as the original source. See also the NRL formulary, Huba [4, p. 44]. 
Duane’s cross-section in the lab frame, with the deuteron accelerated and a stationary 
tritium target is: 

 
6It is interesting to note that Miley, Towner and Ivich chose to display a normalizing 
ratio, f /T2, to give the reactivity a smoother shape.     
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𝜎(𝐸) =
8!

[%B(8C$8(-)!]0R*

3(]^_(8%
√-
)+()

  ,                                     (52) 

 
and the coefficients for D-T are:   

A1 = 45.95 (keV)1/2  
A2 = 50200 (keV ·barn)  
A3 = 0.01368 (keV)-1  
A4 = 1.076  
A5 = 409 (keV ·barn). 
 

In equation (52), the energy denotes the lab energy of the experiments. For deuterons, mass 
md=1875.6 MeV, striking a tritium target, mass mt=2808.9 MeV at rest, the relation 𝐸? =
3(#+0#F)

#F
		suffices to transform the cross section into center of mass. While not shown in 

Figure 1, cross-sections using (52) are indistinguishable from those shown over the E range 
of the measured data. As shown in Bosch & Hale [1, Figure 4], the Duane estimation has 
the greatest error at low energies, below about 20 keV in the center-of-mass frame where 
extrapolations of the data are involved. 
 
Classic astrophysics references, e.g. [17-18] formulate s(E) for low-energy fusion in terms 
of the astrophysical factor, S(E). Cross-section can be defined as: 
  

       𝜎(𝐸) = f(3)
3
exp(−4𝐸M 𝐸⁄ )         (53) 

 
where EC is the energy7 characterizing the magnitude of the Coulomb barrier8. The cross-
section in (53) can also be expressed in terms of the peak Gamow energy, EG (found in 
other literature to be designated E0): 

𝐸g = /'
$4𝐸M0

$ 5⁄
.          (54) 

 
Likewise, there are various formulations for S(E), such as in [11],  
 

𝑆(𝐸) = 𝐴	exp(−𝐸𝑏)          (55) 
 

where A and b is are constants depending upon the reaction9.   
 
Regardless of the formulations selected, s(E) is analytically tied to E, but not necessarily 

 
7	Other	notation	is	found	in	the	literature,	e.g.	𝐸g 	and	𝐸"		may	be	used	for	𝐸M 	and	𝐸g .	
Bosch	and	Hale	[1]	use	𝐵g 	for	the	square-root	of	𝐸M .	

8 Given by	𝐸M =
$%!hi%!i!!jC

ℏ!
 which has the value of 1182 keV for the D-T reaction. Bosch	

and	Hale	[1]	use	𝐵g 	=	4𝐸M 	=	34.3827	for	D(t,n) 𝐻𝑒l
l ;	𝐵g 	=	68.7508	for	 𝐻𝑒l

5 (d,p) 𝐻𝑒l
l ;	

𝐵g 	=	31.3970	for	D(d,p)T;	and	𝐵g 	=	31.3970	for	D(d,n) 𝐻𝑒l
5 ,	units	of	√𝑘𝑒𝑉. 

9 	𝐴 = 9821	barns · 	keV, 𝑏 = −0.029	 keV-1	for the D-T reaction, Kaye and Laby [11]. 
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to T. Because of the former, the cross-section cannot be extracted from the integral, and 
because of the latter, it is unaffected by taking the temperature derivative.  
 
Inserting the astrophysics-based cross-section (53) into reactivity (18) gives 
 

𝑓 = 𝑇+5 $⁄ ∫ 𝜎(𝐸) ⋅ 𝐸!
" ⋅ exp(−𝐸/𝑇)𝑑𝐸

𝑓 = 𝑇+5 $⁄ , f(3)
3
expW−4𝐸M 𝐸⁄ X𝐸

!

"
exp(−𝐸/𝑇)𝑑𝐸

𝑓 = 𝑇+5 $⁄ p 𝑆(𝐸)exp(−𝐸/𝑇 − 4𝐸M 𝐸⁄ )𝑑𝐸
!

"

.     (56) 

 
Then applying (55), which relies on Kaye & Laby [11], gives an integrand in terms of three 
exponentials. 
 
   𝑓 = 𝐴𝑇+5 $⁄ p exp(−𝐸𝑏 − 𝐸/𝑇 − 4𝐸M 𝐸⁄ )𝑑𝐸

!

"
 .    (57) 

 
With known values of E, b and EC, the reactivity in (57) could be solved numerically. 
 
It is customary in the astrophysics literature [17-18], to compare the exponential terms in 
(54-56). Of note is that the right tail of the MB distribution occurs at lower energies than 
these other exponential effects. Also of note is that S(E) belies the broad D-T resonance, a 
varying function, positioned at higher energies relative to MB. Bosch & Hale’s Figure 2 
[1, p. 614] shows that the S(E) function peaks at about 48 keV, with the Gamow peak in 
between.  
 
While other expressions for cross-section can be found in the literature, it is not the purpose 
here to provide a complete listing.  
 
B. First Moment D-T Reactivity  
 
Three different reactivity formulations [1], [2], and [3] are presented to demonstrate the 
first energy moment and reactivity temperature derivative relationships developed herein.  
Note that all three of these are developed to accommodate cross-section varying with 
energy.   
 
1. The Bosch & Hale (B&H) [1] reactivity, f, and first derivative with T, 𝑓>, are given by 
the formulas below. The constants can be found in [1]. 
 

𝑓 = 𝐶(𝜃4𝜉/(𝑚𝑐$𝑇5)exp(−3𝜉)         (58) 
where 

  𝜃 = 𝑇/(1 − (M!'0MC'!0MG'()
((0M('0M''!0MH'()

) and 𝜉 = mI!

(l:)% (⁄   ,      
and 

𝑓> = +*B
n:

?:
?'
− $B

5'
+ B

'
[+M%'

! (⁄

:! (⁄
?:
?'
− 𝜉𝜃( 5⁄ ]                   (59) 

where  
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"5
"'
= 6[(567)(8K9!8J'9:8L'M)9(8M9!8N'9:8O'M)]

(798K'98J'M98L'K)
 and  ";

"'
= 6;

:'
.         

 
 
2. The Caughlan & Fowler (C&F) original formulation [2] is given as a reaction rate 
(RR): 

𝑅𝑅 = 𝑁R𝑓(𝑇9)                    (60) 
 

where NA is Avogadro’s number, and where temperature T9 is in units of a billion degrees 
Kelvin. This RR parameterization and the use of T9 are the convention for stellar 
nucleosynthesis. 
 

𝑓(𝑇9) =
1𝐵0/T92/3exp(𝐵1/ T91/3-{T9/𝐵2}2) ⋅ [1.0+𝐵3T91/3+𝐵4T92/3 + 𝐵PT9+𝐵6T94/3+𝐵7T95/3] 

𝑁Q
 

+<8/T9
2/3exp(<9/T9)
=R

                 (61) 

 
For the D-T fusion reaction, the parameters are:  

B0 = 8.09x1010,  
B1 = -4.524,  
B2 = 0.120,  
B3 = 0.092,  
B4 = 1.80,  
B5 = 1.16,  
B6 = 10.52,  
B7 = 17.24,  
B8 = 8.73x108, 
B9 = -0.523.  

 
The conversion between T9 and T(keV) is T9=0.0116T. 10 
  
The first derivative of the reaction rate, RR (60) with T9 is:  
 

!""
!#$

= − %!%"&'((%"/#)
#! #⁄ − ,""

-#

+
%%&'((%&/#& #⁄ .#'/%'#')(

(#
#)' #⁄ / '(*

#)& #⁄ /%+/
*
#%,#

& #⁄ /+#%-#
' #⁄ )

#' #⁄

+ %%&'((%&/#& #⁄ .#'/%'#')(.%&/-#* #⁄ .,#/%'')(0/%##& #⁄ /%*#' #⁄ /%+#/%,#* #⁄ /%-#+ #⁄ )
#' #⁄

 .   (62) 

 
To calculate df/dT from dRR/dT9 requires the following transformation and use of the chain 
rule 

 
10 	1 electron volt = 11600 degrees Kelvin, T9 = 86.17 keV. 
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1
𝑁R

𝑑𝑓
𝑑𝑇9 =

𝑑𝑅𝑅
𝑑𝑇9  

and 
𝑓> = ?'o

?'
⋅ ?B
?'o

          (63) 
 
where dT9/dT=0.0116. Thus, the analytical derivative in (62) is divided by NA and 
multiplied by 0.01106. 
 
3.  Miley, Towner, and Ivich (MTI) [3] tabulated D-T reactivity values for a T range from 
1-1000 keV. For T<25, these were fitted to a function appearing in NRL Plasma Formulary, 
Huba [4]: 
        𝑓(𝑇) = 𝐴"𝑇+$/5exp(−𝐴𝑇+(/5)         (64) 
 
where A=19.94 and A0=3.68 x 10-12. The first derivative of reactivity with temperature is: 
 

"(
"'
= 𝑓> = ?S(?6!'H K⁄ )@AB(6?'TH/K)

:'M
.       (65) 

 
See also Langenbrunner & Makaruk [5] and Langenbrunner & Booker [7]. However, for 
the table of values over the full range of T, the first derivative can be approximated using 
finite differencing:   

df(Ti)/dT=0.5[f(Ti)-f(Ti-1)/(Ti-Ti-1)]+0.5[f(Ti+1)-f(Ti)/(Ti+1-Ti).           (66) 

 
4.  Comparing the Three Reactivity Evaluations  
Figure 2 shows the three reactivity formulations, and Figure 3 shows their first T 
derivatives with the log(T) scale. 
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Figure 2. D-T reactivity, f, plots for 3 formulations: B&H (red), C&F (green) and MTI 
(blue).  

 

 
Figure 3. D-T reactivity first T derivative, 𝑓>/𝑓, B&H (red), C&F (green), and MTI (blue) 
on the log(T) scale. The 2 blue diamonds appear out of alignment because they are the 
starting values for the finite differencing used to determine the derivative. 

 
A closer examination of the Figure 3 derivatives in Figure 4 reveals a crossing of the zero 
axis near T = 64 keV for all three formulations.    

 
Figure 4. Expansion of the plotting scale, for the D-T reactivity first T derivative, 𝑓>/𝑓, 
B&H (red), C&F (green) and MTI (blue) on the log(T) scale. The crossing at 64 keV is 
expected, because that is the peak of the resonant D-T fusion cross-section. 

 

Table I contains selected values of the 𝑓>/𝑓 ratio for the three reactivity formulations 
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displayed in Figures 3 and 4. 
 
 
TABLE I Selected Values of D-T 𝒇>/𝒇Comparing B&H, C&F and MTI. 

T (keV) MTI      f //f C&F      f //f  B&H    f //f  
0.5 4.30 15.53 15.52  

1 10.44 6.09 6.10  

2 2.67 2.39 2.24  

5 0.72 0.75 0.71  

10 0.27 0.27 0.25  

20 0.069 0.060 0.068  

50 0.0052 0.0047 0.0046  

100 -0.0027 -0.0022 -0.0027  

200 -0.0028 -0.0022 -0.0027  

500 -0.0011 -0.0011 -0.0011  

800 -0.0005 -0.0008 -0.0006  

1000 -0.0001 -0.0006 -0.0004  

 

In Table I, f // f columns for B&H, C&F and MTI are seen to be very close as indicated by 
Figures 2 and 3.   

 
5.  Comparing Constant and Varying Cross-Sections  

The 𝑓>/𝑓 values from B&H, C&F and MTI reactivities and reactivity derivatives are based 
upon varying, evaluated, D-T fusion cross-sections. Therefore, these reactivities are not 
appropriate for the constant cross-section special case, <E*>, or its f *// f * ratio in (34), 
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Calculations for the constant cross-section case are determined from their T-based 
expressions. Recall that <E*> is the mean of the exponential pdf which is T from (31). The 
reactivity, T derivative, and f* // f * ratio are determined using equations (31), (32) and (33):
  

 < 𝐸∗ >= 𝑇     
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Therefore, the f *// f * ratio is calculated as:   

                 )
∗2

)∗
= 	

𝐶𝜎0.5V1𝑇W
1 2⁄

X𝜎𝑇1 2⁄ = 0.5/𝑇  .                                           (67) 

Case 3 is the development of the expression for Brysk’s solution, <Ksoln>, in terms of the  
𝑓>/𝑓 ratio in (47): 
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B
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Figure 5 compares <Ksoln> (varying cross-section) using (47) and the B&H reactivity 𝑓>/𝑓 
values with <E*> (constant cross-section).  The (blue) line is < E*> = T. The nonlinear 
<Ksoln> (red) wraps around the constant cross-section line.  In spite of the linear versus 
nonlinear differences, < E*> does not appear that different from <Ksoln> (varying cross- 
section).  That impression changes in subsequent comparisons.  

        

 
 
Figure 5. <Ksoln> using 𝑓>/𝑓 from B&H (red) and < E*> (blue). 
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Figure 6 compares the reactivities for varying cross-section, f, using the B&H formulation 
(58) and for constant cross-section, f * in (27).  To calculate the latter requires determining 
a value for constant cross-section, s, then values for each T. For purposes of illustration 
only, those cross-sections were determined using the peak Gamow energy, from (54), 𝐸g =

/'
$4𝐸M0

$ 5⁄
. The Duane cross-sections (52) were then determined for those EG values. For 

the D-T reaction,  4𝐸M =34.38, 11  and the leading constant from the coefficients is 
1.1284e+12.  
  
 

 
 

Figure 6. B&H reactivity, f (blue), and f* (red) using Duane constant cross-section at peak 
Gamow, EG.  
 
 
The maxima for f and f * are very different—64 and 136 keV, respectively.  The maxima 
for f is 64 keV because the fusion resonance peaks at 64 keV in the center of mass, 
(deuteron bombarding energy 107 keV in the lab frame.) The higher f*curve is not 
surprising because the Gamow energies are larger than T for T<300 keV.   
 
Figure 7 shows the nonlinear relationship between EG, and T. One might be tempted to 
conclude that the differences between these two reactivity curves is due to the choice of E 
values. Other choices were examined without improving the alignment of the reactivity 

 
11 	𝐵gin the notation of Bosch & Hale [1]. 
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curves. The conclusion is that reactivity curve differences are due to the difference between 
constant cross-section and varying resonant cross-section.  

 
Figure 7. Gamow peak, EG, and T. 
 
 
Figure 8 compares the reactivity first T derivatives of varying versus constant cross- 
sections, 𝑓>  and 𝑓>*, respectively. Here there are significant differences. The varying-
cross-section reactivity derivative (red) crosses the horizontal axis, going negative near 
T=64 keV. In contrast the constant cross-section reactivity derivative curve (blue) remains 
positive.   
 

 
Figure 8. Reactivity T derivatives:  𝑓> (red) and 𝑓>* (blue). 
 
 
Figure 9 compares the 𝑓>/𝑓 and 𝑓>*/f  ratios on log(T) scale. The constant cross-section 
ratio is confined to values between 5.0 and 0.0005, whereas the B&H ratios range as large 

0

100

200

300

400

500

600

700

EG

0 100 200 300 400 500 600 700 800 900 1000
T (keV)

-5e-18

0

5e-18

1e-17

1.5e-17

2e-17

2.5e-17

3e-17

3.5e-17

re
ac

tiv
ity

 d
er

iva
tiv

e

0 100 200 300 400 500 600 700 800 900 1000
T (keV)



	 26	

as 137 at the lower temperatures.  As shown in Figure 4, the B&H ratios cross into negative 
values at T=64 keV, but the constant cross-section ratios remain positive.  
 

 
Figure 9. Reactivity ratios:  𝑓>/𝑓 (red) from B&H and 𝑓>*/f (blue) on log(T) scale. 
 
Figure 10 focuses in on the T region where 𝑓>/𝑓 (red) from B&H crosses into negative 
values.  
 
 
 

 
Figure 10. Close-up of ratios: 𝑓>/𝑓 from B&H (red) and 𝑓>*/f (blue) on log(T) scale. 
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Figures 5-10 make the case for the importance of varying cross-sections, in spite of the 
analytical difficulties that imposes.  These figures demonstrate that the convenience of 
assuming constant cross-sections alters the story of reactivity behavior. This is especially 
noticeable with the changes of shapes for the reactivity derivative and the 𝑓>/𝑓 ratio.  As 
demonstrated in other papers in this study, those quantities relate to other observables, such 
as flux and reaction history from inertial confinement fusion experiments in [8]. 
  
6. Least Square Fits 
Comparing equations (34): 

 B
∗>
B∗
= +(

$'
+ @3∗A

'!
  

and (48): 
B>
B
= − 5

$'
+ @\	<=>?A

'!
 ,  

   
their forms are similar, as functions of the 𝑓>/𝑓  ratios. That form can be generally 
expressed as a linear model for a generic first moment energy estimator, <E>, 
 

B>
B
= 𝑏" + 𝑏(

(
'
+ 𝑏$

@3A
'!

 .                   (68) 
 
For a given set of <E> values, the coefficients matching those in (34) for <E*> would not 
be significantly different from: 

 b0 = 0, b1 = -0.5, b2 = 1.0, 
  

and the coefficients matching those in (48) for <Ksoln> would not be significantly different 
from: 
                           b0 = 0, b1 = -1.5, b2 = 1.0.  
 
The left side of (68), the reactivities, can be determined from the three evaluations: B&H, 
C&F and MTI.  For a given set of <E> values at values of T, least squares fits provide the 
estimates of the coefficients in (68).   
 
Hale [14] provided a set of <E> values12, and these were used in the least squares fits in 
(68) with 𝑓>/𝑓  values from B&H and C&F13 to determine the coefficients. Figure 11 
shows Hale’s set. Some values are in Table I. 
 

 
12 Gerry Hale (Los Alamos National Laboratory) provided 121 calculated <E> values 
covering a T range of 0.20-1000.0 keV. 
13 There were too few tabled values for MTI fits.   
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Figure 11. Calculated <E> values provided by G. Hale [14] verses T.  
 
The B&H and C&F fits indicated that b0 was not (statistically) different from zero, and b2 
was 1.0, as expected from (34).  
 
The B&H ratio was fit to the Hale14 <E> values, resulting in b1 = -1.54. At first glance, it 
appears that -1.54 should be close enough to the value -1.50, the value corresponding to 
Brysk’s solution (48). Statistically, the fit with Hale <E> value is significantly different 
from -1.50. The reason for this is due to the nearly perfect match of Hale’s <E> values 
using the B&H reactivities. The error in the fitting is so small that a parameter difference 
of 0.04 is significantly different at the 5% level of significance. This could be considered 
a case where practical significance overrides statistical significance, resulting in the 
conclusion that Hale’s values follow Brysk’s solution. The Hale <E> values are thus 
verified to belong to the Bosch and Hale formalism. Moreover, the fitting function in (68) 
is justified.  
 
The C&F ratio was fit to the Hale <E> values, resulting in b1=-1.58, which is significantly 
different from Brysk’s solution (48), b1 = -1.50. This difference in b1 is more pronounced, 
retaining the statistical conclusion regarding a difference. 
 
Thus, neither the B&H the C&F values are statistically consistent with the <Ksoln> 
expression.  Neither B&H nor C&F are consistent with the expected value of -0.5 from 
(34), the <E*> definition. That is not surprising because the 𝑓>/𝑓  values ratios were 
developed with the energy-varying cross sections.  
 
The results of these least squares fits illustrate that the b1 coefficient is sensitive to changes 
in the 𝑓>/𝑓 values.  The goodness of the fits contributes to this sensitivity.  The results also 
confirm that B&H and C&F reactivity formulations are closely related for these T ranges—

 
14 Gerry Hale (Los Alamos National Laboratory) [14] provided 121 calculated <E> 
values covering a T range of 0.20-1000.0 keV. 
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which was observed in Figures 3 and 4. 
 
Table II contains the energy estimators from the three cases: <E*>, <Eavg>, and <Ksoln> for 
selected values of T. The column <E*> is the constant cross-section which is calculated as 
T from (31). The columns with < Ksoln > from B&H and C&F and are obtained using 
equation (47):  
 

< 𝐾`abc >= 1.5𝑇 + 𝑇2 B
1

B
. 

 
The Hale provided <E> values match those for <Ksoln> (in (49)) from both B&H up to 50 
keV, and from C&F up to 5 keV.  The last column is the calculated first moment, the 
average, <Eavg> using (39):  

𝑓 = M
R(')

/(
'
0
5 $⁄

< 𝐸<,= >. 

For the <Eavg> entries in Table II, reactivity, f, used equation (58) from Bosch & Hale [1]. 
The cross-sections for calculating <Eavg> were also taken from this work [1]. Implementing 
(39) requires determination of the normalization factor, A(T) from (38): 

1
𝐴(𝑇) = , 𝜎(𝐸)

!

"

exp P
−𝐸
𝑇 R𝑑𝐸. 

It should be noted that <Eavg> values are sensitive to A(T), and that determination was made 
using finite differencing and summations on a coarse grid for only a few values of T. 
Therefore, <Eavg> values in Table II are only approximate and subject to change using more 
accurate numerical methods.   
 

 
TABLE II  Selected Values of D-T for the three cases: <E*>, <Eavg>, and <Ksoln>, 
units of keV. 
 

T 
(keV) 

Hale 
[14] 
<E>  

<Ksoln> 
from 
B&H 

<Ksoln> 
from 
C&F <E*>=T  

<Eavg> 
from 
(39) 

       

0.5 4.6 4.6 4.7 0.5 4.6        

1 7.6 7.6 7.6 1 7.7        

2 12.6 12.6 12.5 2 13.0        

5 25.3 25.3 26.3 5 25.1        

10 40.1 40.0 41.9 10 40.2        

20 57.2 57.1 53.8 20 60.9        

50 86.9 87.1 86.8 50 108        

100 123 123 128 100 160        
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Figure 12 shows the columns in Table II plotted with T, except for <Ksoln> from C&F.  
 

 
Figure 12. <E*> in red circles, <Eavg> in green pluses, <E> sent from Hale in blue 
diamonds, and <Ksoln> in gold x’s.  

 
At the end of Case 3, equations (50) and (51) established the condition for when <Ksoln> is 
equal to the first moment <E> as 
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and when <Ksoln> is equal to <Eavg> as: 
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Using the B&H reactivity for f and 𝑓>, Figures 13 and 14 show the relationships between 
the left and right sides of (50) and (51) respectively. In both these figures the left sides of 
the equivalence condition is plotted against the right sides. The nonlinear relationship 
shown in Figure 13 indicates the difficulty in establishing the equality between <Ksoln> is 
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equal to the first moment <E>. The radically different scales of the axes contributes to this 
difficulty.  In Figure 14, the scales of both axes are similar, and the relationship is nearly 
linear. The slope is significantly different from 1.0, and the intercept is also significantly 
different from zero, indicating the equivalency is not achieved. However, the possibility 
for equivalency is more likely for <Ksoln> with <Eavg> than it is with the first moment, <E>. 

 
Figure 13. Condition for <Ksoln> equal to the first moment <E> according to left and 
right sides of (50).   

 

 
Figure 14. Condition for <Ksoln> equal to <Eavg> according to left and right sides of (51).   
 
V. Summary      

Definition for the first moment of kinetic energy is presented in terms of reactivity and its 
derivative with temperature. One case of that definition was developed assuming constant 
cross-section, <E*>, and two cases with varying cross-sections. Case 2 examines the 
condition where the first moment, <E>, is the average, or mean of E, <Eavg>.  Case 3 
corresponds to a solution given by Brysk [5], <Ksoln>. The constant cross-section case 
focuses on the first moment definition, <E>; whereas the varying cross-section cases are 
based upon a function of that definition. Analytical differences are specified between these 
cases, and, in each case, analytical expressions are developed in terms of reactivity and its 
first temperature derivative. 
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The varying cross-section cases are demonstrated for D-T fusion, indicating their 
differences using three reactivity formulations from Bosch & Hale [1], Caughlan and 
Fowler [2], and Miley, Towner, and Ivich [3].  These three are shown to perform similarly, 
(but with details that could be assessed quantitatively). The differences in reactivities 
between the constant cross-section and the varying cross-section cases are large relative to 
differences between the three reactivity formulations. The application of these for D-T 
fusion confirms the conclusion about differences resulting from assuming a constant cross-
section versus the well-known fusion resonance.    
The differences between the first moment-based estimators: <E*>, <Eavg> and <Ksoln> vary 
according to the values of temperature. By definition <E*>=T; therefore, nonlinear effects 
from varying cross-sections are not represented. While <Eavg> is a normalized version of 
the first moment, <Ksoln> is a nonlinear function of it. Therefore, differences between them 
are especially pronounced if consideration is given to the differences in definitions, <E*>, 
<Eavg> and <Ksoln>. 
During the process of V&V, uncertainty comprises comparing different, published 
formulations, B&H to C&G, to MTI.  The reactivity formulations, or models, differ, and 
those differences can represent differences in the measured cross sections accepted for 
evaluation, and in how the physics is manifest. In addition, uncertainty arises from applying 
any formulation beyond its established domain of applicability. These three models were 
developed using a fitting of their mathematical forms to experimental results and/or 
established calculations. Even though Table I indicates a consistency in reactivities 
between the three (chosen) formulations, uncertainties in that fitting process and a 
comparison of other formulations (not chosen, such as Peres [19]) should be included as 
part of the V&V process. Use of the C&G formulation will be expanded by the authors, 
because of the many other nuclear reactions in its purview.  
The follow-on paper, planned as Part II, continues the analytical development of the 
moment-based definition used by Brysk [12] and its relationship to the definitions and 
solutions in Part I. See also Langenbrunner & Booker [20] for examples using numerical 
values. 
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Appendix A 
Development of the MB Velocity Distribution 

 
The single species velocity, vj, distribution known as the Boltzmann distribution or the 
Maxwell distribution is:   

   𝑓(𝑣u) = 𝐴exp /+#,M
!

$&'°
0.                                               (A1) 

 
The leading term, A, is defined so that p 𝑓W𝑣uX
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Then, imposing the constraint: 
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Recognizing that p 𝑒+-!

!

+!
𝑑𝑥 = √𝜋, define x as 
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The factor / #
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must be included into the integrand for the constraint in (A2) to hold: 
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For the integral to be √𝜋 then A must satisfy the following: 
  

AP
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√𝜋 = 1 
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Therefore, the single species velocity Boltzmann distribution or the Maxwell distribution 
is:  

𝑓(𝑣u) = / #
$%&'°

0
".*
exp /+#,M

!

$&'°
0.                                    (A6) 

 
 

Development of the MB Velocity Distribution in 3 Directions 
 
Considering the velocity as comprised of its three directional components, the following 
definition for v was given in (3): 

𝑣$ = 𝑣-$ + 𝑣.$ + 𝑣/$ 
      𝑣 = 4𝑣-$ + 𝑣.$ + 𝑣/$.                                               (3) 
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The Boltzmann single series, one direction, Boltzmann (aka Maxwell) distribution is given 
above in (A6).  Assuming independence between the three directions, the joint distribution 
𝑓W𝑣-𝑣.𝑣/X is the three-fold product of the single distribution:  
 

𝑓(𝑣-𝑣.𝑣/) = 𝑓(𝑣-)𝑓(𝑣.)𝑓(𝑣/) = / #
$%&'°

0
5/$

	exp /+#(,N
!0,O!0,P!)
$&'°

0.             (A7) 
 
Using the definition of v above, this joint distribution in Cartesian coordinates is: 

	

𝑓(𝑣-𝑣.𝑣/)𝑑𝑣 = / #
$%&'°

0
(
! 	exp /+#,

!

$&'°
0 𝑑𝑣-𝑑𝑣.𝑑𝑣/. 

 
The three directions of the differential as dv in spherical coordinates are v, vdq, vsin(q)df, 
respectively. These replace the differentials 𝑑𝑣-𝑑𝑣.𝑑𝑣/so that: 
 

 𝑑𝑣-𝑑𝑣.𝑑𝑣/ = 𝑑𝑣(𝑣𝑑𝜃)(𝑣sin(𝜃)𝑑𝜙).                                        

𝑓(𝑣-𝑣.𝑣/)𝑑𝑣 = 	/
𝑚

2𝜋𝑘𝑇°0
(
! 	exp |

−𝑚𝑣$

2𝑘𝑇° }𝑑𝑣-𝑑𝑣.𝑑𝑣/ 

          𝑓W(𝑣-𝑣.𝑣/)X𝑑𝑣 = / #
$%&'°

0
5/$

	exp /+#,
!

$&'°
0	𝑣$𝑑𝑣(𝑑𝜃)sin(𝜃)𝑑𝜙.           (A8) 

 
Integrating the joint distribution in (A8) over the two angles produces the marginal velocity 
distribution, f(v):    

f(𝑣) = / #
$%&'°

0
(
! exp /+#,

!

$&'°
0 𝑣$ ∫ ∫ 𝑣$$%

"
%
" 𝑑𝜃sin(𝜃)𝑑𝜙𝑑v         (A9) 

 
The double integral is the spherical shell volume of (4π)𝑣$.  This marginal velocity 
distribution becomes the familiar Maxwell-Boltzmann distribution listed in the text as (2): 
 

         𝑓(𝑣) = / #
$%&'°

0
(
! 	(4π)𝑣$exp /+#,

!

$&'°
0                                  (2) 

 
Most of the equations and concepts in the above development can be found from references 
[10], [18], and the instructional website, Hyperphysics:  
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/disfcn.html#c2 
http://hyperphysics.phy-astr.gsu.edu/hbase/Kinetic/kintem.html#c5. 
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Appendix B 
Development of the Energy Distribution from the MB Velocity Distribution 

 
The relationship between energy and velocity in (5) is used to find the distribution for E 
from the MB pdf in (2) applying the change of variable technique (from v to E): 
 

𝐸 = /(
$
0𝑚𝑣$            (5) 

 
where m is reduced mass expressed as: m1m2/(m1+m2). This kinetic energy definition with 
this mass definition is often referred to as the center-of-energy, or ECM. 
 
The Jacobian of that transformation is   
 

𝐽 = ?,
?3
= F (

$#3
  ,                     (B1) 

 
The pdf for E is found by substituting  

𝑣 = F$3
#

         (B2) 

 
into (5), the MB velocity pdf, 
 

𝑔(𝑣)𝑑𝑣 = 4𝜋 / #
$%&'°

0
(.*
𝑣$exp /+#,

!

$&'°
0 𝑑𝑣 ,       (B3) 

 
 and multiplying the result by the Jacobian in (B2): 

 
𝑔(𝐸) = 𝑔(𝑣) ∙ 𝐽 

𝑔(𝐸) = /$
%
0
( $⁄

/#
'
0
5 $⁄ $3

#
𝑒𝑥𝑝 /−#$3

#$'
0F (

$#3
    .      (B4) 

 
Simplifying (B4) produces the MB-based energy distribution as shown in the text in (7):  
 

𝑔(𝐸) = 2/3
%
0
( $⁄

/(
'
0
5 $⁄

𝑒𝑥𝑝 /− 3
'
0.                   (B5) 

 
Wikipedia® [10] provides the development of (B5) from the momentum, p, in (6): 
 

𝐸 = /|2|
!

$#
0.            (6) 
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Appendix C 

Development of Alternative Constant Cross-Section Case  
 
The constant cross-section special case began with defining h(E) as (25):  
  

ℎ(𝐸) = /(
'
0 exp(−𝐸/.                                        (25) 

 
This resulted in an analytical solution for the first moment because <E*> in (26) was the 
mean of the exponential pdf, and that mean is T:   
 

< 𝐸∗ >= , (
'
𝐸exp(−𝐸/𝑇)

!

"
𝑑𝐸 =                             (C1) 

 
Another analytical solution was given by Gerry Hale [personal communication] using the 
following for h(E): 
 

ℎ(𝐸) = exp(−𝐸/𝑇).                                          (C2) 
 
The resulting first moment of E expression for the function in (C2) is 

 

< 𝐸$∗ >= D 𝐸𝑒𝑥𝑝(−𝐸/𝑇)𝑑𝐸 = 𝑒𝑥𝑝(−𝐸/𝑇)(+3/'+(
(%))

! )
!

"

.                     (C3) 

 
As (C3) indicates, this integral has an analytical solution. Its evaluation from the limits is: 
 

< 𝐸$∗ >= 0-(-𝑇$) = 𝑇$.                              (C4) 
 
Note that from (C3) and (C4):   

< 𝐸$∗ >= 𝑇 < 𝐸∗ >.                                                       (C5) 
 

Dropping both the constant cross-section and leading C, the reactivity for this 𝐸$∗ is: 
 

𝑓∗ = 𝑇+5 $⁄ ∫ 𝐸!
" exp(−𝐸/𝑇)𝑑𝐸 = 𝑇+5 $⁄ < 𝐸$∗ >.                 (C6) 

 
The first reactivity derivative of < 𝐸∗ > with T in (33) is: 
 

          𝑓∗> = − (
$
/(
'
0
5 $⁄

< 𝐸∗ > +/(
'
0
* $⁄

< 𝐸∗ >$.                                      (33) 
                                        

Using (C5) in (33) produces the reactivity derivative with T for 𝐸$∗ 
 

𝑓∗> = −
1
2P
1
𝑇R

5 $⁄ < 𝐸$∗ >
𝑇 + P

1
𝑇R

* $⁄ < 𝐸$∗ >$

𝑇$  
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𝑓∗> = − (

$
𝑇+* $⁄ < 𝐸$∗ > +𝑇+o $⁄ < 𝐸$∗ >2.                              (C6) 

 
Forming the 𝑓>/𝑓 ratio combines (33) with (C6) to produce the following: 
 

																					B
∗>
B∗
=

+%!'
$' !⁄ @3!∗A0'$Q !⁄ <3!∗>

2

'$( !⁄ @3!∗A
= +(

$'
+ @3!A

'(
.	                        (C7) 

 
This ratio corresponds to the 𝑓>/𝑓 ratio for <E*> in (34): 
 

  B∗>
B∗
=

C+%!'
$( !⁄ @3∗A0'$' !⁄ @3∗A!D

'$% !⁄ @3∗A
=	+(

$'
+ @3∗A

'!
. 


